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We study numerically the evolution of wave packets in quasi-one-dimensional random systems described by
a tight-binding Hamiltonian with long-range random interactions. Results are presented for the scaling prop-
erties of the width of packets in three time regimes: ballistic, diffusive, and localized. Particular attention is
given to the fluctuations of packet widths in both the diffusive and localized regime. Scaling properties of the
steady-state distribution are also analyzed and compared with a theoretical expression borrowed from the
one-dimensional Anderson theory. Analogies and differences with the kicked rotator model and the one-
dimensional localization are discuss¢81063-651%97)11603-9

PACS numbgs): 05.45:+b, 71.55.Jv

[. INTRODUCTION the presence of strong classical chaos, a new type of random
matrices has been introduced when studying the [BR].

The main approach to a statistical description of the specthe distinctive feature of these matrices is their bandlike
tra in complex quantum systems originates from the pioneerstructure, which is related to the finite range of interactions
ing works of Wigner(see in[1]), who conjectured that ran- in a given basis. In a sense, the ensembles of band random
dom matrices could represent the simplest meaningful modehatrices(BRM) can be regarded as an extension of the con-
for studying heavy nuclei. Currently, random matrix theoryventional random ensembles, since the latter are recovered
(RMT) has become a very effective tool in a large variety ofby just setting the band size equal to the matrix sizé&\.
physical applications. Until recently the matrices in this Currently, the interest in BRM raised significantly due to
theory were assumed to be homogeneous, i.e., all matrix etheir close relationship with quasi-one-dimensiofgdiasi-
ements were taken to have identical statistics. This simplifi1<D) models with random potential9], or 1D systems with
cation is mainly dictated by mathematical reasons since thieong-range hoppings between neighboring sites. In the 1D
corresponding ensembles of random matrices are rotationatterpretation, the band size corresponds to the hopping
invariant, a property that simplifies the theoretical analysis.range while in the quasi-1D case, it is associated with the

For a long time, the RMT had no concrete physical basisnumber of transverse channels for electron wave propagation
in the sense that conditions for its applicability were notalong a thin wire. Recent numerical and analytical studies of
specified. It was believed that the systems under consideBRM (see[9,10] and references therginled to numerous
ation had to be extremely complex in order to have a goodesults regarding the structure of eigenstates. In particular,
agreement with the predictions of the RNIT-3]. The situ-  the localization length has been shown to depend only on the
ation has changed with the progress of the so-called quantustaling parameteas?/N, so as the statistical properties of the
chaos theory which deals with dynamical Hamiltonian sys-eigenstates that are directly related to the fluctuation proper-
tems exhibiting chaotic motion in the classical limit. One of ties of the conductance.
the main results of this theory is that in the extreme case, However, much less is known about the evolution of
when classical motion is strongly chaotic and no influence ofvave packets in models described by BRM. One should note
quantum localization is taken into account, statistical properthat even in the “simple” case of Anderson-type models in
ties of both spectra and eigenfunctions are well described byD, only the short- and the long-time scales, corresponding
the RMT. This statement has been thoroughly studied antb ballistic spread and saturation of the packet width, respec-
confirmed both for autonomous systems, such as chaotic bitively, have been successfully studigtl]. In quasi-1D(or
liards[4], and for time-dependent models, such as the kicked D with long-range hoppingsmodels, the picture is both
rotator modelKR) [5,6] and the kicked topf7]. Moreover, more complicated and more interesting with respect to the
there are many physical examples where “complexity” of a Anderson case. Indeed, while the diffusion time scale is ab-
guantum system is not maximal, but, nevertheless, a statistéent in 1D models of Anderson type, since the mean free
cal description applies pretty well. path is of the order of the localization length, classical dif-

To describe the consequences of quantum localization ifusion alters the ballistic spread in quasi-1D systems, before

being eventually suppressed by localization effects.
In dynamical systems, the influence of strong localization
*Electronic addresses: izrailev@ inp.nsk.su or on classical diffusion in momenturfor energy space has
izrailev@physics.spa.umn.edu been studied, in detail, in the framework of the KR. It was
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found that the time scale of the wave-packet spreading that iems influenced by strong localization effects. For this rea-
analogous to classical diffusion is much longer than the logason, much attention has been recently paid to the so-called
rithmic time scale over which the complete correspondencéand random matrices, which are characterized by the free
between classical and quantum description hf#g8,12,13.  parameteib defining the effective band width of a Hamil-
The entire diffusive process, including the final saturationtonian. Such random matrices with elements decaying away
proved to exhibit remarkable scaling properti€13]. In  from the main diagonal, appear to provide more realistic
particular, the diffusive time scale is proportional to the lo-models for the Hamiltonian of “complex” quantum systems
calization length of those eigenstates which are involved in(see, e.9]9,10] and references therginThe simplest type of
the dynamics. In view of the analogies existing between dyBRM is given by matrice#,,,, with zero elements outside
namical and Anderson-type localization, the results obtainethe band [n—m|>b), while inside the band|6—m|<Db),

in the study of wave-packet evolution in the KR will repre- matrix elements are assumed to be independent and distrib-
sent the touchstone for the present investigation of packaited according to a Gaussian law,

dynamics in quasi-1D disordered models. However, because

of the existence of basic differences as ws#le Refs[6,13—

_ 2 4 2
16]), it is not presently clear to what extent the similarity P(Hnm) = - \/EGXP(—Hnm/ZUnm)v
between dynamical and disordered systems can be pushed nm
forward. Ug
In this paper we extend a previous stydy’] of initially O'ﬁmE<H§m>:?(l+ Sam)s )

S-like wave packets in a quasi-1D geometry, with particular
attention to their width and fluctuations on different time yynere 5, is the Kronecker symbol and2=2, implying

scales. We show that the scaling ansatz for the temporgha; the variance of the off-diagonal matrix elements are

scale has to be modified with respect to R&f] in order to  gqual to 1. The BRM ensemble can be regarded as a gener-

guarantee a convincing overlap of the results obtained fogjization of the standard Gaussian orthogonal ensemble as

different bandwidths, also presenting an argument to jus- the former reduces to the latter whies: N. Analogous gen-

tify this new choice. _ , eralizations can be introduced for the unitary and symplectic
The paper is structured in the following way. In Sec. Il, gnsembles of band random matriges

the model is introduced and discussed together with the main 1ne |imit caseb=0 corresponds to diagonal matrices

properties of spectra and eigenstates of BRM. In Sec. Il Doty ije h=1 corresponds to tridiagonal Hamiltonians with
ballistic and diffusive time scales are analyzed and the scal;qp, diagonal and off-diagonal disorder. The latter case is
ing properties of packets in terms of bandwidittare estab-  \ye|| known in the physics of disordered media; the main
lished. The effect of noise in the destruction of coherence igoperties of such matrices are relatively well understood.
also briefly discussed. Section Il terminates with the resultsp,q general case of BRM, where the variance of the matrix
for the suppression of classical diffusion due to the localizag|ements decreases with the distance from the main diagonal,
tion of eigenstates. In Sec. IV, we focus on the problem ofnoqyced in18], is also amenable to an analytic treatment.
fluctuations of the shape of packets both for the diffusive anq‘—hey are not, strictly speaking band matrices, but an effec-

relaxation time scales. In Sec. V, a phenomenological degye hand sizeb can be defined from the shape of the enve-
scription of the asymptotic shape of the packets is givenone 19,

based on results for the 1D Anderson model. Moreover, fluc- " \vhat follows. we consider large values b&1 and
tuations along the asymptotic profile of packets are studied,sq;;me tha>b2. The first condition implies a large num-

The conclusions are summarized in Sec. VI. ber of nearby states coupled by the interaction. The second
condition allows us to neglect finite size corrections arising
Il. BAND RANDOM MATRICES: MAIN PROPERTIES from the finiteness of the samples.
Considerable interest towards the ensemble of BRM was
stimulated by the investigation of the quantum behavior of
Since its birth, random matrix theory has been mainlyperiodically driven Hamiltonian systems. A paradigmatic
dealing with statistical properties of “full” random matrices, system in this class is the kicked rotator model. Indeed, the
for which all matrix elements are independent and distrib-unitary matrixU yielding the time evolution between two
uted according to the same law. In physical applications thigonsecutive kicks has, in the angular momentum representa-
implies that interactions are assumed to be so strong artibn, a bandlike structure with an effective bandsize approxi-
complex that no other parameter, apart from the symmetry ofnately equal to the strengkhof the kicks. Outside the band,
matrices, is to be taken into account. As a result, such mathe matrix elements df decrease extremely fast, while in-
trices are associated with the extreme case of maximal chag#de the band they can be treated as pseudorandom entries if
which is known to appear in various physical systems, suclhe corresponding classical evolution is chadd. As a
as heavy nuclei, atoms, metallic clusters, etc. Furthermoreonsequence, both spectra and eigenstates of BRM of the
full random matrices represent a good model for the descriptype (1) are expected to have statistical properties similar to
tion of local statistical properties of spectra and eigenstatethose of the KR. A number of data substantiate this belief
in some range of the energy spectrum, typically, in the semif9,10]. Recently, it has also been rigorously shown that the
classical region. BRM model can be reduced to the more general nonlinear
On the other hand, the conventional RMT is both unables model[18]. As a consequence, BRM turn out to play an
to describe important phenomena such as localization dfnportant role in the understanding of quasi-1D disordered
eigenstates, and to characterize the spectra of physical sysiedia.

A. Definitions and applications
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The above relationships gave a boost to the investigations *
of statistical properties of eigenstates and eigenvalues of 5 E a(k) k2
BRM as they also allow us a better understanding of the | (E):z{ _(E) }B' _ k=
properties of the KR, as well as of quasi-1D and 1D models * R ' ~ 2
with long-range random interactions. { _Ew a(k)
B. Density of states and structure of eigenstates k=n—m, (4)

As was first numerically shown if20] and later analyti-
cally proved in[18], the density of statep(E) for infinite
BRM (N—o) obeys the semicircle law

whereB is the second moment of the functiafk). In case
(1), i.e., for a sharp band of sizg one obtain®=b?/3 and,
thus,

1 ah
p(E):W\/Sbvz—Ez; |E[<Ro=vV8b, (2) I (E)=E[1—<E)2 b? ®)
o 3 RO .

with p(E)=0 for |[E[>R, . The parametes is just the stan- At variance with the KR, the localization length of the eigen-
dard deviation of the distribution of off-diagonal elements, states of BRM depends on the eneigly

v2=(H2 )= 0?/2; it does not influence the statistical prop-
ertles of the spectra as well as the structure of the eigenstates, C. Numerical procedure

since it can be scaled out. Fb=N, expression(2) reduces . .
to the well known Wigner semicircle law derived in conven-  Although considerable progress has been made in the de-

tional RMT. scription of the eigenstate structuteee[9,10] and refer-
In infinite BRM, all eigenstatesg(n) are known to be €NCeS therein the evolution of wave packets is still poorly
exponentially localized9,10,2( understood even in the limit of infinite samples. The math-

ematical model we consider below is the time-dependent
Schralinger equation on a 1D lattice,

cemi~ex{ - B0 ness @ don_
5=, 2 HanCr(D), )

wheren, is the “center” of an eigenfunction in the basis in
which the random matrices have been defined. The quantitwherec,(t) is the probability amplitude for an electron to be
I..(E) is the localization length defined as the inverse of theat siten and H,,,, is a symmetric BRM of the typdl).
asymptotic spatial decay rate of the amplitude of the correEquation(6) has been integrated numerically using a finite-
sponding eigenfunction. Numerically,.(E) can be deter- time step (it=103—10 *) fourth order Runge-Kutta algo-
mined by implementing the transfer matrix method. It is im-rithm on a self-expanding lattice in order to eliminate finite-
portant to recall that the localization lendth describes the size effects[21]. Whenever the probability of finding the
decay of the eigenfunction only in the tail and not in theparticle at the edges of the chain exceeded!t010b new
central region of size- b2. This region is characterized by an sites were added to each edge. The initial condition was
effective numberd ~1,, of “principal components” which taken to be as-like state located in the middle of the chain,
are usually defined in terms of the inverse participation ratid.e., c,(t=0)= 5, . At each time step, the normalization
and of the so-called entropic localization lengith(see[6,9] condltlon for the total probability,=,|c,(t)|?>=1, was
for detailg. checked observing fluctuations smaller than 40

In finite samples, one more parameter comes into play, A further check of the accuracy of our calculations has
the rankN of the matrices. In such a case, all relevant prop-been performed by reversing the time-axis direction after
erties of spectra and eigenstates are parametrized by the rat000 time unitgfor b=10). The difference between the ini-
A=b?/N [9,10]. Upon changing\, one can accurately fol- tial probability distribution and that obtained after integrating
low the transition from the completely localized €1) to  for 2000+2000 units was found to be less than 18 In all
the delocalized X>1) regime. Numerous studies of the the cases discussed below, a large number of disorder real-
BRM allowed us to unravel the dependence of the statisticaizations has been considergdore than 15pin order to get
properties of eigenfunctions on this scaling parameter. Imid of sample-to-sample fluctuations.
particular, in finite bases of sizd, all eigenstates are ex-
tended ifA>1, and all their properties are very similar to Il. DIFFUSION OF WAVE PACKETS
those for the standard RMT. Our interest here is devoted to ) _
the opposite limit\ <1 of very localized eigenstates where  The time-evolution of a quantum wave packet in the lat-
finite-size effects can be neglected. Based on the results ofice is naturally described by the mean-square displacement,
tained for the KR[6,20], it was Eredmted that the localiza-
tion lengthl., is proportional tob~. A rigorous analysi$18] _ — 2 2
has confirmed this prediction and established the dependence M(b.t)={u(t)) <% mlen(V) > ' @
|.~ p2b? of the localization length on the energy. In the case
of BRM with a general envelope functiom(k) for matrix ~ where(- - -) stands for the average over different realizations
elementH,,,, of the frozen disorderH,,. The time dependence of
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M(b,t) provides a qualitative description of the dynamical
regime: a power-law evolutioM (t) ~t”, wherev<<1 corre-
sponds to a subdiffusive behavidhinting at a possible, 1
eventual localization »=1 corresponds to ordinary diffu- 10
sion, while v>1 to superdiffusion =2 characterizes bal- o
listic motion). 10
As mentioned above, BRM can be regarded as a good

model for dynamical quantum systems such as the KR in the 4~
region of strong classical chaos. In the classical limit, this
model exhibits an unbounded diffusion in angular momen-

tum space if the kick strength exceeds some critical value. It 10
was discovered that even in the deep semiclassical domain,
guantum effects can suppress classical diffug@hgiving 10
rise to a phenomenon that is closely related to Anderson
localization of a quantum particle in random potent{@8— NPT R TTY R T TT B

o
B
=

-2

24]. This effect of “dynamical localization” was claimed to 107 10™ 10° 10’ 10°
be experimentally observed in the ionization of hydrogen tb™
subject to a monochromatic fie[@5]. A formal connection

with a 1D tight-binding model has been found[i6], thus FIG. 1. Scaling behavior df1(b,t) vs time in the ballistic time
reviving a genera| interest for localization in one- scale. The reported values bfareb=20, 25, 30, 35, 40, and 45.
dimensional systems. The inset shows the lost of scaling fort,,.

We have investigated the behaviorMf(b,t) by numeri- ] )
cally integrating Eq(6) for different values ob. The results ~The above type of evolution terminates when the average
of our analysis have been compared with both theoreticavidth VM of the packet becomes of the same order as the
predictions of the 1D Anderson model and numerical find-bandsizeb, so that farther sites come into play. By substitut-
ings for the KR. ing back in Eq.(9), one finds that the ballistic spread occurs
on the time scale

A. Ballistic time scale 1

The essential difference between periodic and disordered t<ty,~ % (10
guantum lattice structures mostly lies in the localization
properties of their elecironic states. In the periodic case, E.*'Accordingly, the ballistic time scale shrinks to zero for in-
the states are periectly extended Bloch waves, Wh'k.a ' reasing the interaction randpe Notice that the ballistic re-
stron_gly dllsor.dered samples, the packets are asymptotical ime is entirely new with respect to the analogous problem
localized in time because of quantum interference effects

: ; - .~"In the KR where, at small times, an exponentially fast spread
However, even in the latter case, there exists a ballistic re-

; ) - .of the packet takes place.
gime, occurring on time scales of the order of the elastic

scattering timet,,, i.e., the time for an electron to move by

an amount corresponding to the mean free pith In B. Diffusive time scale
quasi-1D systemd,, is known to be equal to the number of  In 1D Anderson-type models, wave packet saturation
transverse channels. starts immediately beyond the ballistic time scale, since the

In order to investigate the scaling behavior of the packeimean free path,, and the localization length, are of the
size withb, we have numerically integrated E@) for very  same order I(,~2l,,). Accordingly, no intermediate diffu-
short times~t,, and different values ob in the range sive regime can be observed. In the case of a large bandsize
b=20-45. The behavior of the mean-square displacemens>1, the localization length.,~b? is much larger than the
M(b,t) is reported in Fig. 1 with the scaling assumption  mean free patt.,~b, so that a diffusive time scalg, ap-

o pears. In order to estimatg, we shall follow the scaling
M (b,t) =b?M (t ). (8 arguments developed from the theory of quantum chaos
where they have been successfully introduced to explain the

The very good data collapse confirms the scaling anzatavell known “quantum suppression of classical diffusion™ in
Equation(8) can be understood by estimating the ballisticthe KR[12].
time scalet,. Let us start by noticing that the leading con- ~ The first crucial observation is that the eigenfunctions
tribution to the wave packet spreading over short-time scalege(n) are exponentially localized in the standard basis for
comes from the B sites which are directly coupled with the all energy value€ in the spectrunjconsequently, there is a
site n=0 where the wave packet is concentrated at timePure-point spectrunp(E)]. Let us proceed by noticing that
t=0. By evaluating the Schdinger equation and thereby an initial statec,(t=0) excites an effective, finite number

determiningM (b, t), one obtains N Of eigenstates with corresponding enerdigs Accord-
ingly, the spectrum of those eigenstates participating to the
b evolution of the packet is characterized by a mean level spac-
M(bt)= S n2H, 22~b2 © N9 Ac—Ro/Ney whereR3=8bv? is the radius of the semi-
n=—b ' circle, see Eq(2).
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FIG. 2. An example of wave-packet diffusion beyond the bal-

listic time scale folb=12. The same curve is reportéd a doubly

logarithmic plo} in the inset, magnifying the early stages of diffu-  FIG. 3. Scaling ofM(b,t) vs time in the diffusive time scale.
sion, to testify the linear behavior. The reported values df areb=25, 30, 35, 40, and 45.

Therefore, for timeg<1/Ay, the packet evolution does minor deviations at small times which are to be attributed to
not “feel” the discreteness of the spectrum, which is re-the crossover to the ballistic regime. Notice that the scaling
solved over longer time scales and eventually leads to locakyctor of the temporal axis is different from the value con-
ization. A typical evolution is reported in Fig. 2, where the jectured in Ref[17] (t—t/b?), on the basis of small simu-
dependence of the mean-square displacem\(iv,t) for  Jations.
b=12is shown on a very large time scale. However, as long Equation(12) seems to suggest that there is a substantial
astp,<t<tp, with disagreement with the value of the diffusive time obtained in

t ~N/R (11) the KR mc_>de|. Howeyer, this discrepan_cy is to be attributed
D et 120 to the choice of the time units adopted in modbl Indeed,
the motion of the particle is analogous to the standatas- in dimensionless units, we recover the results obtained in the

sica) diffusion. This means tham~Dt, whereD is the KR model, i.e.,
diffusion constant and can be interpreted as the square of
the number of effectively excited, unperturbed states. This
regime is clearly seen in the inset of Fig. 2, where the evo-
lution of M is reported in a doubly logarithmic plot.

The quantity M reaches its maximal valué,,,, at
t~tp. The valueMY2 is of the same order as the total
numberN of eigenstates that participate to the packet evo- C. Diffusion suppression and scaling properties
lution. Let us finally notice that the packet width is asymp-  gne of the most important peculiarities of the time evo-
totically of the order of the localization length of the eigen-|,tion of wave packets in 1D and quasi-1D random potentials
functions, i.e.Nes~1..~b? (the energy dependence is here s ihe saturation of the widtM for t—oo. In analogy with
irrelevant and can be droppediccordingly, the following  he evolution of wave packets in the K] and from the
scaling relations hold: localization properties of the stationary probldthe local-
ization length grows a®?), one expects that fop>1 the
limiting value M_.(b) grows asb*. In order to confirm this

whereR, is the width of the spectrum. The second estimaté’rediction, we have performed detailed numerical experi-
in Eq. (12) corresponds to the well known relation between™MeNts, in the range=4-12. The asymptotic valuel.(b)

the localization length and the diffusion coefficient in the Nas been accurately determined by averag(®,t) over a
theory of disordered solids,~ mpD, wherep is the density long time after an initial transient. From our data we have
of states(see, for example[9]). Accordingly, Eq.(12) sug- found that the dependence Mdf,, on b is slightly slower than

gests the following scaling relation for the mean-square dis€XPectedM..~b® with a~3.87x0.02. This anomalous be-
placementM (b, t) havior is presumably to be attributed to the presence of finite

band-size corrections which are not negligible in the range of
M (b,t)=b*M (t/b%?). (13)  bvalues that has been numerically investigates (2). Our
results are reported in Fig. 4, whevi(b,t) andt are divided
The numerical results obtained for quite large values of thdy the asymptotic valudi.. and M8, respectively. While
bandwidth b= 25, 30, 35, 40, and 4%re reported in Fig. 3 the scaling ansatz favl follows straightforwardly from the
according to the above ansatz. The very good overlap indeedktailed knowledge of the localization properties, the rescal-
confirms the expected scaling dependence. There are onigg of time axis follows from Eq(13) (we have preferred to

to

TRONLX,, DED/RO’Vlw. (14)

TD =

tD"’lx/Ro, D"‘ImRo, (12)
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. . . . ; ~ dM  D?In[t/(2D)]
M/M., R=ENW' t>2D (16)

whereD is the classical diffusion coefficient. Numerical data
seems to confirm the expectatiofsg. (16)], although the
presence of very large fluctuations prevent us from drawing a
convincing conclusion. Despite the better statistics of our
data, the presence of the logarithmic correction cannot be
definitely assessed in BRM too.

Another approach to the problem of quantum diffusion in
the presence of strong localization has been recently sug-
. ‘ | gested i 31] (see further developments fih4]): it is essen-

0 2 4 6 8 10 tially based on a phenomenological diffusion equation for
Green'’s function, which takes into account backward scatter-

0.2t 0.0

0.0 0 4'0 8IO 1é0 1é0 260 540 ing. At large times, the relaxation rate is given [dy]
yM_2e ~  DAn¥qt/(2D)]
~ ('[/Z—D)Z’ t>2D (17)

FIG. 4. Mean-square displacemevitfor b=4-12. The smooth
curve corresponds to the phenomenological expreddign In the  which differs from Eq.(16) by a further logarithmic factor.
inset the same quantities are shown for shorter times. At the moment, all available numerical data for the KR do
not allow us to draw a final conclusion in favor of either
scale the data with reference tb,,, rather than td as the expression. In any case, let us again remark that the quantum
former choice appears to better account for finite-"size” cor-localization in the KR is of a dynamical natufthere is no
rections. randomness in the modelso that it is not clear to what
Anyway, the nontrivial evolution during the late stages ofextent it is similar to the localization of Anderson type.
the diffusive regime confirmed by a direct investigation. Instead of focusing on the question of the exact
Since generic properties of eigenstates in quasi-1D mode®symptotic dependence+«) of the mean-square displace-
have been found to be similar to those of strictly 1D disor-mentM(b,t), it is, for the time being, more useful to limit
dered modelg9], it is natural to expect that the similarity ourselves to provide an effective description of the wide time
extends to the dynamics of wave packets as well. Howevergegion that also includes the crossover from classical diffu-
even in 1D geometry, the analytical treatment is very diffi-sion to complete saturation. In the absence of any theory, we
cult. Analytical results are available only in the two oppositemake use of the phenomenological expression suggested in
regimes,t<1 andt>t,. For example, the asymptotic de- [32] (see alsd6])
pendence of the mean-squared displacement

{(u(t))=(x?(t)) of packets in the long-time limit is given by B _ 1
In(t/2t,,) ;
<u(t)>~—~aOI2 1-———™) >t (15) whereM.,,, tp, andB are the three independent parameters
m t/2ty to be determined. The first one is obviously obtained from

the asymptotic evolution, while the short-time classical dif-

wherel . andt,. are the mean free path and the correspondfus'on (here, we neglect the ballistic time scale which is

ing time between consecutive back scattering processes. Ti%deed_ negligible for largk) provides a further constraint to
estimate is based on the expression for the quantum diffusio e fulfilled. In fact, fort<tp, Eq.(18) reduces to
coefficient obtained if24]. The logarithmic singularity in
Eq. (15) follows from resonant transitions occurring between _ BM.. _
; M(b,t) t=Dt, (19
pairs of the so-called Mott stat¢7,28. Such states have a o
peculiar structure characterized by two humps lying at a dis-
tance much larger than their effective width. Since Mottwhich allows us to expredts, in terms of the last unknown
states appear in pairs, the corresponding energies are vefywhich can be determined by fitting the global behavior of
close to each other and this results in a resonant tunneliniyfl (b,t).
over large distances. The influence of Mott states on elec- The main idea behind the phenomenological expression
tronic properties of disordered 1D models has been studietl8) is the repulsion of the energy levels participating in the
in [29], where the clustering of energy levels was discoverecvolution of the packet. As was previously discussed, the
and attributed to these states. diffusion rate is proportional to the mean spectral density and
The effect of these states has been included in the study dfremains unchanged far<tp, according to the uncertainty
the long-time behavior of wave packets in the KBO], principle. However, fort=ty it decreases, since the only
where an expression similar to Ed.5) has been introduced eigenstates that continue to contributeoperative eigen-
to describe the evolution of the mean-square displacemerstates’) are those whose energy level spacingatisfies the
M(t) in the momentum representation, relation s<tp/t. The relative number of such spacings
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(hence, the relative diffusion ratés given by the spacing 10000
distribution p(s) for the operative eigenstates, .
D(t) tp) £+ = 8000 |

: (20

S
7 ’ ' B+l __
D fop(s )ds'~s

6000
where t>ty is assumed. The above time dependence for

large times is the core of the phenomenological expression

(18) (see details i6,32)). 4000 r
According to the above relation, the paramegecharac-

terizes an effective repulsion between those eigenstates

which are excited by the initial wave packet. It is clear that 2000 }

these eigenstates strongly overlap. As a result, the value of

B can be expected to be quite close to 1. Although these 0 d L :

arguments are no longer valid for very long times, when the 0 20 40 60 80 ¢ 100

level clustering[16,33 due to the influence of Mott states

becomes important, Eq18) can still provide a sufficiently FIG. 5. Diffusion of packets with additional noise for=8. The

good description of the packet. dynamics. Numerical eXperi'diffusive constant is determined from simulations performed for
ments done for the KR6,32] yield quite a small value of jitterent noise strengthg?.

B (B8~0.3). This result, which is somehow contradictory
with other studiegsee the discussion if81]), is probably time scale of classical diffusion and this results in a rather

ldl:_e to the insufficiently long times considered in the SIMU-smooth transition from classical diffusion to complete relax-
ations. ation (see Fig. 4.

Our detailed numerlca! experiments V.V'th .BRM' PeI" " In order to estimate the critical value of the noise strength
formed on a much longer time scale and with high statistics

reveal quite a good correspondence with the scaling deper?—gr which completgly d_e stroys quantum coherence and Igads

dence(18) (see Fig. 4 The best fit of Eq(18) gives the to pure classical diffusion, one needs to compare the shift of

following vaIues-Bq;o.g andt.~pL5 Singé thegvalues of levels induced by the additional noise, with the mean level
. -~ . D— .

the band sizé are not very large, the limiting valud., has spacing between operative eigenstates. Since the latter turns

. ut to be proportional to b4, one can see that if the shift
been purposely rescaled to the same level for the differen E~g2, is larger than 15, localization will be com-
b values. By neglecting the residual weak deviations from P o .
perfect scaling, we obtaid ~0.8325 The most important apletely destroyed. Accordingly, effects of quantum coher

. . . ence should be observable only when the condition
point of the above analysis is that the value of the repulsiorya_ 4 3 s atisfied. Our numerical simulations confirm this

parameterg is quite close to 1. This means that even forestimate' the data in Fig. 5, which refer he=8, show that
very large times close to the relaxation, the approximat%r g—g. =5 (in units of.b‘,l-S) we haveD/bé-5~O 86 in
= Cr_ -~ .

power dependence t¥#f for the difference . ,
L good agreement with the value found from the fit of the
AM=M_,(b)—M(b,t) mimics the correct dependence : ; -
_ scaling dependence given by E@.8). We would like to
AM~In()t [see Eq.(15)]. As a result, one can treat the stress that diffusion due to the noise occurs also for

spaling dependeno(_dS) as a gopd description of both plas_,- <d.r; however, the rate of such diffusion is different from
sical diffusion and its suppression due to strong IOC"’II'Z""“O"?hat aiven by the classical diffusion determined in the limit

of eigenstates. .
The asymptotic localization of the wave packet is entirelybHOO (for details see, e.gL36)).

a consequence of the frozen character of the disorder in the

Hamiltonian. However, in reality, physical systems are also IV. FLUCTUATIONS OF PACKET WIDTH
subjected to time-dependent noighis is, for instance, the
case of applications to nuclear physj&gl]). In the KR, the
influence of a time-dependent noise was discussed for t

In any statistical process, the analysis of average quanti-
htées provides a limited description of the underlying proper-

first ime in[35] (see also the detailed investigation[86]), ties. At least the variance should be considered in order to

finding that if the strength of the noise exceeds some critica?IChIeve a more complete characterization of the phenomenon

value, then it destroys coherent effects of quantum localiza0f interest. In the present case, we shall consider the fluctua-

tion and pure classical diffusion is recovered. tions of M(b,t) in both the diffusive {,<t<tp) and the

The addition of noise to the BRM provides an alternativere.laxation (>1p) regime. The relevant quantity to be deter-

method to determine the diffusion coefficieBt from the ~ Mined is the size of sample-to-sample fluctuations,

direct computation of the linear growth & (b,t). It is first ) o1/

interesting to notice that the computation Bf cannot be AM(b,t)=[{u(t)") —(u(t))“]™% (21
easily performed in practice without the presence of noise.

The reason is that in the absence of a time-dependent noisehere the bracketé. - -) denote the average over different
corrections to the linear behavior M (b,t) arise already at realizations of the Hamiltoniahl,,,,. A meaningful way to
short times, thus preventing an accurate determination of theresent the numerical data is through the relative amplitude
coefficient of the linear growth. In other words, coherentu=AM/M of the fluctuations. Its scaling properties with
effects of quantum localization come into play even on theare discussed in the Secs. IV A and IV B.
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FIG. 6. Relative fluctuations on the diffusive time scale. The 0 20 40 60 80 100 120

data is scaled according to E@2). In the inset, a least-square fit /b2
for the same quantity and differebtvalues is shown; the time is
fixed, t=0.50"5.

FIG. 7. Relative fluctuations in the saturation regime. The val-
A. Diffusive time scale ues ofb are 4, 5, 6, 7, 8, 10, and 12. In the inset, a least square

) . . . . fitting is shown for the same quantity which now is averaged over
As the diffusive time scale is relatively short, we have ime fromt=400%2 up tot=25mb%2

been able to determing for quite largeb values(namely,
b=<45), so that finite band-size corrections should be defiwith 6~0.7 (see Fig. J. A detailed study shows that when
nitely negligible. In our numerical experiments, we have in-the value ofé is varied by +0.1, the superposition of the
tegrated Eq(6) up to a timet,,=b%%2 for more than 1000 Vvarious curves on the plateau gets appreciably worse. As an
realizations of the disorder. The results are reported in Fig. @dditional check, we have performed a least-square fitting of
under the scaling assumption w versusb after averaging the curves over times40b%2.
i The fit presented in the inset of Fig. 7, confirms the value
p(b,t)=~b"7u(t/b™). (22) 5~0.7+0.01. One should note that this value is in disagree-
ment with the result found on the diffusive time scale for the
factor n». This has to be attributed to the spatial structure of
the Mott stategsee belowappearing to control the evolution
of the packet for time$>t,. We would like to stress that
H1e anomalous scaling described by E@4), is in close
agreement with the numerical data for the KR, where it has
een observed thgt~b~? with an anomalous exponent
~0.6[14]. Note that in the KR, larger values of the effec-
tive parameteb have been reached.

In Ref.[14] it was conjectured that the above anomalous
scaling can be considered as an indication of the fractal
structure of the quantum steady-state distributigft— o°).

The next important issue concerns fluctuations around thdlore precisely, they argued that the asymptotic shape can be
so-called steady-state distribution of the wave packet in thelescribed by an ensemble of orii~1%° statistically inde-
asymptotic regimeg>ty. If one assumes that the steady- pendent degrees of freedomd being the number of “chan-
state distribution ot,(t— ) is characterized by an ergodic nels” where the amplitude of the wave packet is essentially
spread of the packet over some finite sNg, and if the different from zerg. The same conjecture can be raised in

By performing a least-square fit of gnversus I at fixed
time t=b%%2, well inside the diffusive regime, we have es-
timated » which turns out to be approximately :9.02
(see the inset in Fig.)6 One should notice the reasonable
agreement with the value of the exponent recently obtaine
in the KR [37], »=~1.0. This scaling parameter has been
conjectured to be related to the mesoscopic fluctuations o
the diffusion coefficien{37]. However, the connection has
not been entirely clarified.

B. Relaxation time scale

components,, are statistically independent, then the present case as well, although a direct check is an ex-
tremely hard task. Let us finally mention, that such an argu-
_ A_MN i 23) ment is compatible with the existence of Mott states which
K="~ \/N—s ' mainly participate at the structure of the steady state.

In order to better disentangle the question of fluctuations,
Since the components, are directly related to the ampli- we have also investigated the temporal behaviok¢b,t).
tudes of eigenstates and the latter are expected to be randokhe main motivation for this study is the comparison be-
on the scale of their localization length, one can concluddéween sample-to-sample and temporal fluctuations for a typi-
thatNg~(l..(b))~b?, i.e., u~1/Mb. However, our numerical cal realization of the disorder. In practice, we have integrated

data in the rangé=4-12 indicate that the Schrdinger equation for a time up to=250°%? dis-
carding an initial transient time< to=400%2 [which is suf-

(t/b%?)~ 1 (24) ficiently long for M (t) to saturaté The Fourier power spec-
# b’ trum |U(w)|? of u(t) [let us recall thatM (t)=(u(t))] has
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=2, b>X|U(wb®H|?)=b>TAM(t/b?)]?.
wb

(29

By comparing Eq.(25) with Eq. (24), one obtainsé~1.1,
instead of the previous estimafie= 0.7. Whether this differ-
ence implies that ensemble averages are different from tem-
poral averages, or simply that they are affected(gry)

In(clUlPb %)
&

-10 7 different finiteb corrections, is not clear at the moment.
V. STEADY-STATE DISTRIBUTION
-15 . \ \ A. General discussion
-6 -4 -2 0 2 As mentioned above, the localization of all eigenfunctions

In(wb®?) [see Eq(4)] implies that fort>tp the quantum steady state

f(n,t)=l|c,(t)|? fluctuates around an average profile

FIG. 8. The Fourier spectruiffU(w)|2) for the caseb=4, 6, fo(n)=(f(n,t)). As the effective number of eigenstates

and 8. The solid curve with slope 2 is drawn for reference. composing a single wave packet is finite, the average profile
does depend on the disorder realization. However, in the

o limit b—o, the number of statistically independent compo-
then been averaged over more than 150 realizations. Thgnts diverges and sample-to-sample fluctuations are ex-
results forb=4, 6, and 8 are reported in Fig. 8 in a doubly pected to vanish. In that limit, temporal and ensemble aver-
logarithmic plot. The best data collapse is obtained by asages should coincide as long as the motion is ergodic.
suming that|U ()|?)=b® with s =5.8. At “high” frequen- On the basis of diagrammatic techniques, many results
cies, (|U(w)|?) exhibits a Lorentzian-type behavior, which have been obtained for the steady-state distributigr) in
turns, at low frequencies, into a weak divergence that revealsontinuous 1D models with white noise potentiakre, x
the presence of nontrivial long-time correlations. In fact, bydenotes the position of the electjoin particular, an expo-
invoking the Wiener-Kintchin theorem, the low-frequency nential decayf (x)~exp(—|x|/4l,) has been predicted for
tail in the spectrum of|U(®)|?) can be connected with the the tails of f4(x) (I, being the mean free path24]. A
relaxation properties oM (t) towards its asymptotic value Subsequent more accurate analy38] revealed the presence
M... More precisely, the power-law convergence of the typeof the prefactor|x| ~*2 Both findings are included in the
t~# assumed in Eq(18) implies a power-law divergence as 9lobal expression derived ir89),

o~ 1*A, which is compatible with our data. However, the w2 (e (1+ 72)?
low-frequency cutoff due to the finite time of our simulations fs(x)= —f nsin(79)m—————=>
. g 16, Jo [1+ch(mn)]
prevents drawing a definite statement about the presence of a
truly power-law divergence. Nevertheless, we can, at least, 1+ 72
determine the crossover frequeney, separating the two xXexpg — x| |d7. (26)
m

temporal regimes, which turns out to bg=0.02b?. Such a

frequency is approximately 100 times smaller than the meah fact, the above expression implies that, close to the origin,
spacing between the energy levels of the eigenstates whighe spatial dependence is purely exponential,

effectively participate in the evolution of the wave packet.

This observation can be taken as an indirect confirmation of fs(x)~exp(=[X|/lm),  x<Ip (27)

the role played by the Mott states in the long-time evolution. . ) )

As has already been recalled, Mott states have quite a spihile the asymptotic decay is described by

cific structure: they appear in pairs and are characterized by fo(x)~|x| =3 2exp(— |X|/41,,),  x>4l,. (28)

two humps, a distanck apart. This leads to a quasidegen-

eracy of the order oAE~exp(-L/l..), whereL is typically  Therefore, the above two equations reveal that the decay rate
much larger than the localization length. Accordingly,  S(x)=[Inf(x)]’ (the prime denotes the derivative with re-
over long-time scales, a few Mott states may dominate thgpect to the argumentchanges by a factor of 4. One conse-
packet dynamics. guence of the nonpurely exponential behavior is that the av-
For what concerns the scaling behavior of the spectrungrage size of the saturated packet is two times smaller than
(|U(w)|?) with respect tab, the estimated exponest=6.6  the asymptotic localization lengifix|)=2l,. It is interest-
is in perfect agreement with Eq24). Indeed, the relation ing to notice also that the asymptotic depende(@® is
between the spectral densitpr power spectrumand the  similar to that for the conductance of 1D samples of finite
variance of the signall(t), implies size[40] in the strong localized regime; in this casés the
ratio of the sample size with the localization length. As no
analytical results are available for quasi-1D systems, in Sec.
2_ 2 V B we shall compare our numerical results with the above
[AM(D] Ew: (U@l expressions, by fitting the only free paramdigr
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FIG. 9. Asymptotic average profile of the wave packet for FIG. 10. Logarithm of the steady stag for b=5.

b=4-12 after rescaling. The inset shows the behavior near to the. . . . .
maximum; smooth lines follow from the theoretical expressionBY iNserting the ansat@31) in Eq. (29) and averaging over

(26). the noise term, it was found that

In any case, some information on the steady-state distri- (om(m])~ex _|n—m| (33)
bution f,(n) can be obtained from the structure of the eigen- ®m 2, J’

states by exploiting the following equality:
implying that the linear average yields a different localiza-

tion length compared to E@30).
fs(n):é | em(no) em(m)|?, (29 By repeating the same calculations for the expression
(29), one obtains thats=exp(n—ny|/l..), which is found to
where ¢,(n) is the nth component of the eigenstate with be in agreement with the numerical results for the KR model
energyE,, andny is the position of the initiab-like packet.  as it impliesls=2l, .
Therefore, determining the asymptotic shape of a wave However, relation (29 implies that the average
packet is tantamount to determining the average correlatiofi ¢,(n)|?) should be used rather th&hy(n)|). In such a
properties of single eigenstates. Although no rigorous resultsase, the result is
are known in this direction, a phenomenological approach
allowed us to shed some light on the closely related KR ) [n—m|
problem[6,30,33. Because of the analogies between BRM (lem(n)| )~ex;{ T
and the KR, it is instructive to compare the results for the -
steady distribution as well. A rough estimation of the tails ofwhich implies thatf = exp(n—ng|/2l..). The correctness of
f(n) can be obtained in the following wagee[13,41 for  this expression is confirmed by the relatiby=4l.. that it
detaily. If one assumes the simple exponential formimplies.
em(n)~exp(=|m-n|/l,), for the mth eigenstate, Eq(29)
leads to the expression B. Numerical data

(39

In order to determine the asymptotic shape of the wave
(30 packet, we have followed the evolution of an initially
o-like packet for timed=120Q . The distributionf(n) has
then been obtained by averaging over more than 150 realiza-
tions for severab values in the rangb=4-12. The results
are reported in Fig. 9 with the by now standard scaling hy-

2|n—ng|
fs(n)~ex;{ - I—) ,
which, in turn, impliesls=1.,, wherely is the localization
length of the asymptotic packgdefined from the probability
amplitude, i.e., taking the square root of Eg0)]. However, .
this result is inconsistent with the numerical data for the KRPOtNESIS,
which instead indicate thaf~ 2l [41]. To explain the latter
result, it was suggested to take into account the large fluc-
tuations of the eigenstates around their shape,

T(x)=b2%f(n), x=n/b? (35)

that is once more confirmed by the good data collapse.
A peculiarity of all our simulations is thdt(n) is larger
, (31) than the neighboring values by approximately a factor of 3.
The reason for this apparent anomaly can be traced back to
the specifics-like shape of the initial packéthat implies Eq.
whereé,, is a Gaussian noise with a zero mean and a vari{29)] and to the spatial random structure of the eigenvectors.
ance[41], Indeed, the latter assumption, together with the observation
that only a finite numbek of channels effectively contribute
((Aémn?)=Dglm—n|, D¢~1.,. (32)  to the sum in Eq(29), leads to

1 [m—n|
em(n)~ Tex ——*+&mn

| oo
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fs(ng)~L{¢*(No)); 300 : : :

fs(n#ng)~L%(¢?(n)){*(N)). (36)

P{log(f)}

Since it is known that ¢*)=3/L, while {¢?)=1/L for the
eigenfunctions of matrices belonging to the Gaussian or-
thogonal ensemblg3], we obtain thatf (ny)/fs(n)=3 for
n close to but different fronmg. This value of the ratio is in
pretty good agreement with the above mentioned numerical
estimate.

Moreover, the numerical results reported in Fig. 9
strongly suggest that the decay f{n) in the vicinity of
ng is definitely faster than in the tails. Therefore, it is very |
tempting to compare this data with the theoretical depen- 0 - il L -
dence derived for 1D disordered modg). (26)]. The best -25 =20 -15 -10 -5
fit of the only free parameter givés~0.29; the correspond- log(f,)
ing curve is shown in Fig. 9see the solid line The very o
good agreement between the numerical results and the ana- FIG. 11. Distribution of Iri, for b=5.
lytical curve over a broad range &fvalues suggests that a
properly modified theory to include the determination of thebetween the two lengtH4” andl; for the shape of saturated
mean free path from first principles should be able to accounivave packet, is approximately equal to 2 as known for the
for the asymptotic properties of packets in quasi-1D systemsingle eigenstatesee the Sec. V A
as well.

One should also notice that the dependence of the slope C. Fluctuations of the steady state
on the distance from the centey of the packet is an entirely

new feature with respect to the analogous problem in the KR In this secti(_)n we directly invest?gate _the natL_lre of wave-
[41,13, where no evidence of two distinct regions of local- packet fluctuations in the asymptotic regime. This enables us

ization has been found. The reason for this discrepancy is né? test the correctness of a conjecture relative to the single
I|genvectors raised in the context of the KR. Indeed, fluctua-

clear: on the one hand it is possible that this reflects an aCtufons are verv imoortant in that thev allow us to explain the
difference between the two models, on the other hand, it i y Imp y P

possible that the accuracy of the numerical data for the Kjﬂfference between the decay rate of the wave packet and

; . A : hat of the eigenvectors.
E;:i]ﬁ:z Ptztn()anough to reveal this peculiarity in the associate Having in mind Eq.(31), we computed the logarithm of
s(n).

L K . e
A further difference is the variation of the localization fs(n) and studied its variance at a distanta=6b" from

; ; ; the center of the packéaveraging also over a small window
length of the eigenstates with the energy in BR&&e Eq. of five neighboring sites, under the assumption that the fluc-

(5)]. Far from the center of the packet, we expect that thetuations are nearly constant in such an inteérvaé a result
decay is dominated by the longest localization length y : ’

1..(0)=2/3 (in b2 units. On the other hand, from Eq28) we have found that the distribution function p&In(fy) is,
we find thatl;=8l,~2.32, which is only slightly smaller with a good accuracy, a Gau§3|é|3ee for instance the his-
than 4..(0)~2.66. Accordingly, the equality,=4I.. found togram reported in Fig. 11 which refers to the chse5 and

: ; : is the result of 5000 simulations with independent realiza-
in the phenomenological theory for KR and explained by,: . . ' . .
invoking the presence of strong fluctuations of the individualt'ons of the disorder This represents a first confirmation that

eigenstatefA1] appears to also hold in the present case. Th the hypotheses made in the KR can be profitably carried over

BT ; o the present model.
small deviation is presumably to be attributed to the not ye : S . .
I . : . More complete information is obtained by studying the
vanishing contributions of more localized eigenstates. In-

stead, if we average over all energies, we Obtainquctuatlons ofy for different values ofAn. More precisely,

(I..(E))=0.5 (in b? unity which results in a localization we have computed the variance
length | s=4(1..(E))=2 for the total wave function. More- a2(n)=([Infy(n) 13 —(Inf4(n))2 (37)
over, it is interesting to notice that a direct determination of
s by fitting the profiles reported in Fig. 9 with a pure expo-jn the steady-state regime. The results for the cases
nential IaW, yleldS| 5%2: this means that the multiplicative b=5-8 are reported in F|g 12 with the Sca“ng assumption
correction 1/x|*?in expressior(28) is essential for a correct ;2(n)=h242(x), wherex=An/b% The data show that for
estimate of s, if the range ofn/b? is not large enough. large x, the variance grows linearly witk, indicating that

A further more direct confirmation of the presence ofthe |ogarithm of the profile diffuses around the average
strong fluctuations in the various eigenstates is obtained byajue. This is a further confirmation of the validity of a re-
determining the localization length{’ of the asymptotic |ation of the type(31) for the wave packet and it is strength-
packet from the logarithmic averagéln(fy))] of the single  ened by the observation that the estimated slope is approxi-
packets. The resulting profile, reported in Fig. 10, yieldsmately equal to 1 in scaled units.
IS)~1.3 to be compared with the vallg~2.32, obtained This behavior is also analogous to what happens in 1D
from the arithmetic average. Interestingly enough, the ratialisordered models, where it is assumed that the logarithm of

100
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The “short”-time diffusive regime has been investigated

14 + 1 by computing dM/dt when a small amount of time-
4 dependent disorder was superimposed to the quenched disor-
12 ¢ ' , ' der. As a result, we found that the diffusion coefficient in

dimensionless units is approximately four times larger than
the localization length, after averaging over the energy de-
pendence. The presence of noise with stremgtiof the or-

der of a critical valug~ 1/b®, destroys quantum coherence
and recovers classical diffusion.

Another issue addressed in this paper concerns the fluc-
tuations of the size of the packet over different time scales.
We found that in the diffusive regime, the relative amplitude
of the fluctuations scales ag=AM/M~1/b7 where
7=0.9. In the saturation regime, instead, we found conflict-

-10 -6 -2 2 6 10 ing results: ensemble averages suggest an anomalous scaling
n/b* behavior, i.e.u~ 1/b? with §=0.7 (in close agreement with
the results for the KR a frequency analysis suggest that

FIG. 12. Variance of Ify, in the steady state after rescaling the 6=1.1.

x axis forb=5,6,7,8,10. The straight line is the fit for large values ~ The study of the Fourier power spectrum shows that the
of x. The inset shows the behavior close to the maximum. tails of |U(w)|2 have a Lorentzian-type form. At small fre-
quencies, a weak singular behavior fid(w)|? has been
detected,; this result is in agreement with the power-law con-
vergence oM to its asymptotic value. Furthermore, we have
been able to extract the crossover frequetngy where de-
yiations from 1b? start in|U(w)|2. Such a frequency is two
orders of magnitude smaller that the mean average separation

constant, indicating that the amplitude values are essentiallfetWeen the energy levels which participate in the evolution
independent of one anothésee also the inset in Fig. 12 of thg wave packet. This is a further .conflrmatlc_)n of the
Accordingly, all numerical findings do confirm the conjec- participation of Mott states to the Iong-tlme evolution.

tures that have been so far utilized to present all the features For what concerns the asymptotic shape of the wave
of wave-packet diffusion in a coherent manner. Unfortu-packets, we found that the scaling 14@6) is well verified
nately, so far there are no analytical results concerning thalready for relatively largé values. Moreover, the analytic
structure of the eigenstates in the middle of their localizatiorexpression derived in the context of the 1D Anderson model

&(n/b?)

fes R TR,
10 B, 2 (S

8

6
4
2
0

the absolute value of the Green’s functiofG¢m,n;E)| has a
Gaussian probability distribution with the mean equal to
—|m—n|/l,, and the variance equal tan—n|/l., [42].

Another interesting observation concerns the central pa
of the packefi.e., |x|<1), where the variance? is almost

region, even in the well-studied 1D Anderson case. [see Eq(26)] reproduces pretty well the shape of the average
profile, upon fitting a single parameter. A further interesting
VI. CONCLUSIONS result of our numerical analysis concerns the difference by a

) ) factor of 4 between the decay rate of the asymptotic profile

In the present paper we have studied the evolution proparound the origin and that along the tails. Moreover, the

erties of wave packets in quasi-1D disordered media degjtference between the localization length estimated from the

scribed by tight-binding Hamiltonians with long-range ran- 5yerage of the logarithm of the profile and that obtained from

dom interactions. We have found that the wave pack®t: the jinear average of the profile confirms the relevance of

first spreads ballistically, over a time scale of the orderyctyations. This observation is reinforced by the asymptotic
t~1/b"2 which becomes negligible in the limit—: (i) |inear growth of the variance? of the logarithm of the

exhibits a diffusive behavior, for timez/zof the order bs/zj profile versus the distance from the center of the packet.
(ii ) finally, for times larger tharip=b""“, stops spreading

remaining asymptotically localized.

The scaling properties of the spread of the packet are
different in the ballistidsee Eq(10)] and diffusive[see Eq.
(12)] regime. Beyond the ballistic regime, we propose the We acknowledge useful discussions with B. Chirikov, Y.
heuristic formula(18) to effectively describe both the diffu- Fyodorov, A. Mirlin, S. Ruffo, and D. Shepelyansky. F.M.I
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esting feature of Eq(18) is the prediction of a power-law related problems in nuclear physics application. T.K. and
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